Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 8): 127560, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884230

RESUMO

A label-free surface-enhanced Raman scattering (SERS) was designed for sensitive detection of interleukin-6 (IL-6). The sensing element composed of anti-IL-6 antibodies adsorbed on the surface of spherical gold nanoparticles (AuNPs) as SERS-active surface. The principle of detection was probing antibody conformational changes using its intrinsic SERS fingerprint after binding to IL-6. Comparison of SERS spectra of antibody before and after binding to IL-6 showed that secondary structure of antibody does not change upon binding to IL-6. Vibrational information from disulfide bonds ν(SS) in antibody structure indicated some changes of geometry around SS bridges as a consequence of the immunocomplex formation. Transmission electron microscopy (TEM) and UV-Vis spectroscopy were used to confirm AuNPs conjugation with antibody as well as IL-6 binding to antibody on the surface of AuNPs. The SERS-based immunoassay showed a wide linear range (2.0-1000 pg mL-1) and a high sensitivity with a limit of detection (LOD) as low as 0.91 pg mL-1 (0.04 pM) without using any extrinsic Raman label. UV-Vis spectroscopy was employed as a conventional method for IL-6 detection based on observation of any change in the position of localized surface plasmon resonance (LSPR) band of AuNPs-antibody conjugates with LOD of 10 ng mL-1.


Assuntos
Interleucina-6 , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Anticorpos , Ressonância de Plasmônio de Superfície , Análise Espectral Raman/métodos
2.
Biology (Basel) ; 11(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892955

RESUMO

Engineered 3D human adipose tissue models and the development of physiological human 3D in vitro models to test new therapeutic compounds and advance in the study of pathophysiological mechanisms of disease is still technically challenging and expensive. To reduce costs and develop new technologies to study human adipogenesis and stem cell differentiation in a controlled in vitro system, here we report the design, characterization, and validation of extracellular matrix (ECM)-based materials of decellularized human adipose tissue (hDAT) or bovine collagen-I (bCOL-I) for 3D adipogenic stem cell culture. We aimed at recapitulating the dynamics, composition, and structure of the native ECM to optimize the adipogenic differentiation of human mesenchymal stem cells. hDAT was obtained by a two-enzymatic step decellularization protocol and post-processed by freeze-drying to produce 3D solid foams. These solid foams were employed either as pure hDAT, or combined with bCOL-I in a 3:1 proportion, to recreate a microenvironment compatible with stem cell survival and differentiation. We sought to investigate the effect of the adipogenic inductive extracellular 3D-microenvironment on human multipotent dental pulp stem cells (hDPSCs). We found that solid foams supported hDPSC viability and proliferation. Incubation of hDPSCs with adipogenic medium in hDAT-based solid foams increased the expression of mature adipocyte LPL and c/EBP gene markers as determined by RT-qPCR, with respect to bCOL-I solid foams. Moreover, hDPSC capability to differentiate towards adipocytes was assessed by PPAR-γ immunostaining and Oil-red lipid droplet staining. We found out that both hDAT and mixed 3:1 hDAT-COL-I solid foams could support adipogenesis in 3D-hDPSC stem cell cultures significantly more efficiently than solid foams of bCOL-I, opening the possibility to obtain hDAT-based solid foams with customized properties. The combination of human-derived ECM biomaterials with synthetic proteins can, thus, be envisaged to reduce fabrication costs, thus facilitating the widespread use of autologous stem cells and biomaterials for personalized medicine.

3.
Analyst ; 147(15): 3470-3477, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35713181

RESUMO

In this work we report the development and validation of a photoelectrochemical immunosensor on the basis of alkaline phosphatase (ALP)-linked immunoassay for the detection of human serum albumin as a model analyte. In this biosensor, oriented immobilization of capture antibodies on aminated polystyrene was achieved via physical adsorption. After the interaction with the analyte, ALP immobilised on the surface through the sandwich immunoassay catalyses the hydrolysis of sodium thiophosphate (TP) to hydrogen sulphide (H2S) which in the presence of cadmium ions yields CdS quantum dots (QDs). The electrical current is generated in the course of the photoelectrochemical process (PEC) during irradiation of the CdS QDs with a UV LED (365 nm) on home-made screen-printed carbon electrodes modified with a conductive polymer. Reaction time, steps and volumes were optimized for the miniaturization of the process in order to develop a lab-on-a-chip platform. The microfluidic system was designed with optimised parameters to fabricate the immunosensor combining the immunoassay with PEC detection. The final system presents a sensitivity comparable to that of the commercial kit thanks to the signal amplification enabled by the enzymatic growth of CdS QDs in situ. This photoelectrochemical immunosensing strategy potentially opens up a new avenue for the detection of a wide range of analytes of interest due to the universal and effective enzymatic signal amplification method. Moreover, the developed bioanalytical device allows for a great reduction of time and reagents compared to exiting commercial assays, making it suitable for point-of-care applications.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Fosfatase Alcalina , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Imunoensaio/métodos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Sulfetos
4.
J Fungi (Basel) ; 7(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067785

RESUMO

Macrophages, cells effective in sensing, internalizing and killing Candida albicans, are intertwined with the extracellular matrix (ECM) through different signals, which include the release of specific cytokines. Due to the importance of these interactions, the employment of in vitro models mimicking a fungal infection scenario is essential to evaluate the ECM effects on the macrophage response. In this work, we have analyzed the effects of human and porcine decellularized adipose matrices (DAMs), obtained by either enzymatic or organic solvent treatment, on the macrophage/Candida albicans interface. The present study has allowed us to detect differences on the activation of macrophages cultured on either human- or porcine-derived DAMs, evidencing changes in the macrophage actin cytoskeleton, such as distinct F-actin-rich membrane structures to surround the pathogen. The macrophage morphological changes observed on these four DAMs are key to understand the defense capability of these cells against this fungal pathogen. This work has contributed to the knowledge of the influence that the extracellular matrix and its components can exert on macrophage metabolism, immunocompetence and capacity to respond to the microenvironment in a possible infection scenario.

5.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917732

RESUMO

The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage's functional role.


Assuntos
Tecido Adiposo , Matriz Extracelular , Imunocompetência , Macrófagos/citologia , Macrófagos/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Técnicas de Cultura de Células , Matriz Extracelular/química , Coto Gástrico , Humanos , Lipídeos/química , Ativação de Macrófagos , Camundongos , Fagocitose/imunologia , Células RAW 264.7 , Suínos , Alicerces Teciduais/química
6.
Talanta ; 225: 122029, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592758

RESUMO

In this work, a portable and disposable screen-printed electrode-based platform for CdS QDs electrochemiluminescence (ECL) detection is presented. CdS QDs were synthesized in aqueous media and placed on top of carbon electrodes by drop casting. The CdS QDs spherical assemblies consisted of nanoparticles about 4 nm diameters and served as ECL sensitizers to enzymatic assays. The nanoparticles were characterized by optical techniques, TEM and XPS. Besides, the electrode modification process was optimized and further studied by SEM and confocal microscopy. The ECL emission from CdS QDs was triggered with H2O2 as cofactor and enzymatic assays were employed to modulate the CdS QDs ECL signal by blocking the surface or generating H2O2 in situ. Thiol-bearing compounds such as thiocholine generated through the hydrolysis of acetylthiocholine by acetylcholinesterase (AChE) interacted with the surface of CdS QDs thus blocking the ECL. The biosensor showed a linear range up to 5 mU mL-1 and a detection limit of 0.73 mU mL-1 for AChE. Moreover, the inhibition mechanism of the enzyme was studied by using 1,5-bis-(4-allyldimethylammonium-phenyl)pentan-3-one dibromide with a detection limit of 79.22 nM. Furthermore, the natural production of H2O2 from the oxidation of methanol by the action of alcohol oxidase was utilized to carry out the ECL process. This enzymatic assay presented a linear range up to 0.5 mg L-1 and a detection limit of 61.46 µg L-1 for methanol. The reported methodology shows potential applications for the development of sensitive and easy to hand biosensors and was applied to the determination of AChE and methanol in real samples.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Carbono , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Medições Luminescentes
7.
ACS Appl Mater Interfaces ; 12(26): 28993-28999, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501677

RESUMO

Synthesis of atomic nanoclusters (NCs) using proteins as a scaffold has attracted great attention. Usually, the synthetic conditions for the synthesis of NCs stabilized with proteins require extreme pH values or temperature. These harsh reaction conditions cause the denaturation of the proteins and end up in the loss of their biological functions. Until now, there are no examples of the use of antibodies as NC stabilizers. In this work, we present the first method for the synthesis of catalytic NCs that uses antibodies for the stabilization of NCs. Anti-BSA IgG was used as a model to demonstrate that it is possible to use an antibody as a scaffold for the synthesis of semiconductor and metallic NCs with catalytic properties. The synthesis of antibodies modified with NCs is carried out under nondenaturing conditions, which do not affect the antibody structure. The resulting antibodies still maintain the affinity for target antigens and protein G. The catalytic properties of the anti-BSA IgG modified with NCs can be used to the quantification of bovine serum albumin (BSA) in a direct sandwich enzyme-linked immunosorbent assay (ELISA).


Assuntos
Anticorpos/química , Bioensaio/métodos , Catálise , Ensaio de Imunoadsorção Enzimática , Ouro/química , Imunoensaio , Nanopartículas Metálicas/química , Soroalbumina Bovina/química
8.
Mater Sci Eng C Mater Biol Appl ; 112: 110912, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409065

RESUMO

In this work the modification of polystyrene micro-well plates and their use as bioanalytical platform is described. A wet-chemical procedure was applied for the chlorosulfonation of these polystyrene substrates (PS) resulting in well-controlled and reactive surfaces. This method enabled the production of transparent and stable substrates under ambient conditions. The chlorosulfonyl moieties at the substrate surface were converted under mild conditions into different functional groups. The modification of PS served to increase the hydrophilic properties of the surface and thus, the improvement of interaction with biocompounds. The resulting substrates were characterized by contact angle measurements, X-ray Photoelectron Spectroscopy and colorimetry. PS substrates modified with different functional groups and attachment approaches (covalent link and direct adsorption of the antibodies) were used as the platform for immunoassays and the results compared to a commercial Human Serum Albumin ELISA kit. Aminated surfaces gave better results than those with carboxyl, alkene or epoxy groups and even the commercial kit.


Assuntos
Poliestirenos/química , Ácidos Sulfônicos/química , Adsorção , Aminas/química , Ensaio de Imunoadsorção Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia Fotoeletrônica , Albumina Sérica/análise , Propriedades de Superfície
9.
Mikrochim Acta ; 186(9): 657, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31468185

RESUMO

A method is presented for sensitive determination of thrombin activity. It is based on (a) the interaction between fibrinogen after activation with thrombin, and (b) an enzymatic amplification step consisting of in-situ growth of CdS quantum dots (QDs). Fibrinogen is immobilized on the surface of the wells of a microplate and then incubated with a mixture of biotinylated fibrinogen and thrombin. Thrombin activates immobilized fibrinogen and free biotinylated fibrinogen. This leads to the formation of insoluble biotinylated fibrin that remains bound on the surface of the wells. Afterwards, the samples are incubated with avidin-labeled alkaline phosphatase (ALP) which binds to biotinylated fibrin. ALP hydrolyzes the substrate p-nitrophenyl phosphate (pNPP) under formation of phosphate ions which stabilize CdS QDs that are grown in-situ from cadmium(II) and sulfide. The generation of fibrin is correlated with the activity of thrombin. Increased thrombin concentration results in increased fluorescence that can be measured at excitation/emission wavelengths of 300/510 nm. The introduction of such an amplification step (the enzyme-triggered growth of QDs) allows for the quantification of thrombin in the picomolar concentration range, with a linear response up to 2.5 pM and a detection limit of 0.05 pM. The method was applied to the determination of thrombin activity in human plasma and of the thrombin inhibitor argatroban. Graphical abstract Schematic representation of a fluorometric method for determination of thrombin activity in the picomolar concentration range based on the interaction between fibrinogen after activation with thrombin, and an enzymatic amplification step consisting of in-situ growth of CdS quantum dots (CdS QD).


Assuntos
Compostos de Cádmio/química , Fluorometria , Pontos Quânticos/química , Sulfetos/química , Trombina/análise , Trombina/metabolismo , Fibrinogênio/análise , Fibrinogênio/metabolismo , Humanos , Tamanho da Partícula , Propriedades de Superfície
10.
Analyst ; 143(8): 1727-1734, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29552682

RESUMO

Enzymes are pivotal elements in bioanalysis due to their specificity and extremely high catalytic activity. The sensitivity of bioanalytical assays depends mainly on the capacity of an observer to detect the product(s) of a biocatalytic reaction. Both natural and artificial compounds have been traditionally used to evaluate enzymatic activities. The drawbacks of chromogenic and fluorogenic organic enzymatic substrates are their high cost and low stability, resulting in high background signals. We review here state of the art assays in the detection of enzymatic activities using recent advances in nanoscience. Novel methods based on the use of nanoparticles lead to increased sensitivity and decreased costs for bioanalysis based on enzymes as recognition elements and signal amplifiers in Enzyme-Linked Immunosorbent Assays (ELISA). Novel approaches toward the detection of enzymatic activities are based on biocatalytic synthesis, modulation, etching, and aggregation of nanoparticles under physiological conditions.


Assuntos
Técnicas Biossensoriais , Enzimas/química , Nanopartículas/química , Biocatálise , Ensaio de Imunoadsorção Enzimática , Corantes Fluorescentes
11.
Biosens Bioelectron ; 101: 116-122, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055193

RESUMO

Methanol is a poison which is frequently discovered in alcoholic beverages. Innovative methods to detect methanol in alcoholic beverages are being constantly developed. We report for the first time a new strategy for the detection of methanol using fluorescence spectroscopy and photoelectrochemical (PEC) analysis. The analytical system is based on the oxidation of cysteine (CSH) with hydrogen peroxide (H2O2) enzymatically generated by alcohol oxidase (AOx). H2O2 oxidizes capping agent CSH, modulating the growth of CSH-stabilized cadmium sulphide quantum dots (CdS QDs). Disposable screen-printed carbon electrodes (SPCEs) modified with a conductive osmium polymer (Os-PVP) complex were employed to quantify resulting CdS QDs. This polymer facilitates the "wiring" of in situ enzymatically generated CdS QDs, which photocatalyze oxidation of 1-thioglycerol (TG), generating photocurrent as the readout signal. Likewise, we proved that our systems did not suffer from interference by ethanol. The PEC assays showed better sensitivity than conventional methods, covering a wide range of potential applications for methanol quantification.


Assuntos
Oxirredutases do Álcool/química , Bebidas Alcoólicas/análise , Técnicas Biossensoriais/métodos , Compostos de Cádmio/química , Metanol/análise , Pichia/enzimologia , Pontos Quânticos/química , Sulfetos/química , Cisteína/química , Técnicas Eletroquímicas/métodos , Enzimas Imobilizadas/química , Peróxido de Hidrogênio/química , Limite de Detecção , Oxirredução
12.
J Biomed Mater Res A ; 103(3): 1106-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24910285

RESUMO

Currently available keratoprosthesis models (nonbiological corneal substitutes) have a less than 75% graft survival rate at 2 years. We aimed at developing a model for keratoprosthesis based on the use of poly(ethyl acrylate) (PEA)-based copolymers, extracellular matrix-protein coating and colonization with adipose-derived mesenchymal stem cells. Human adipose tissue derived mesenchymal stem cells (h-ADASC) colonization efficiency of seven PEA-based copolymers in combination with four extracellular matrix coatings were evaluated in vitro. Then, macroporous membranes composed of the optimal PEA subtypes and coating proteins were implanted inside rabbit cornea. After a 3-month follow-up, the animals were euthanized, and the clinical and histological biointegration of the implanted material were assessed. h-ADASC adhered and survived when cultured in all PEA-based macroporous membranes. The addition of high hydrophilicity to PEA membranes decreased h-ADASC colonization in vitro. PEA-based copolymer containing 10% hydroxyethyl acrylate (PEA-HEA10) or 10% acrylic acid (PEA-AAc10) monomeric units showed the best cellular colonization rates. Collagen plus keratan sulfate-coated polymers demonstrated enhanced cellular colonization respect to fibronectin, collagen, or uncoated PEAs. In vivo implantation of membranes resulted in an extrusion rate of 72% for PEA, 50% for PEA-AAc10, but remarkably of 0% for PEA-HEA10. h-ADASC survival was demonstrated in all the membranes after 3 months follow-up. A slight reduction in the extrusion rate of h-ADASC colonized materials was observed. No significant differences between the groups with and without h-ADASC were detected respect to transparency or neovascularization. We propose PEA with low hydroxylation as a scaffold for the anchoring ring of future keratoprosthesis.


Assuntos
Resinas Acrílicas/química , Bioprótese , Córnea/cirurgia , Matriz Extracelular/química , Membranas Artificiais , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Colágeno/química , Córnea/metabolismo , Doenças da Córnea/metabolismo , Doenças da Córnea/cirurgia , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Coelhos , Alicerces Teciduais/química
13.
Analyst ; 137(23): 5666-71, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23061089

RESUMO

In this work the activation of transparent PS substrates by chlorosulfonation is described and their distribution in the subsurface region is analyzed. For this purpose XPS, FTIR-ATR and colorimetry have been used. It is shown that the electrophilic aromatic substitution of polystyrene in pure chlorosulfonic acid is extremely quick with complete surface coverage by chlorosulfonic groups achieved after only a 10 minute reaction time at -10 °C. It is further demonstrated that the reaction is very surface selective and that even after reaction times as long as 3 hours, the modification is limited to a layer with a thickness of less than one micron. The activated PS substrates can be further functionalized in a second step with carboxylic groups. Due to the excellent optical transparency that the samples maintain upon modification, the modified systems were successfully probed for use in ELISA assays.


Assuntos
Poliestirenos/química , Ácidos Sulfônicos/química , Propriedades de Superfície , Colorimetria , Ensaio de Imunoadsorção Enzimática/métodos , Interleucina-6/análise , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...